Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.951
Filtrar
1.
PLoS Genet ; 18(1): e1009622, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982775

RESUMO

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.


Assuntos
Candida albicans/patogenicidade , Quinase 8 Dependente de Ciclina/genética , Proteômica/métodos , Purinas/farmacologia , Fatores de Transcrição/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Mutação com Perda de Função , Fosforilação , Fatores de Transcrição/genética
2.
Toxicol In Vitro ; 79: 105278, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34843885

RESUMO

Understanding the adverse effects of genotoxic chemicals and identifying them effectively from non-genotoxic chemicals are of great worldwide concerns. Here, Saccharomyces cerevisiae (yeast) genome-wide single-gene knockout screening approach was conducted to assess two genotoxic chemicals (4-nitroquinoline-1-oxide (4-NQO) and formaldehyde (FA)) and environmental pollutant dichloroacetic acid (DCA, genotoxicity is controversial). DNA repair was significant enriched in the gene ontology (GO) biology process (BP) terms and KEGG pathways when exposed to low concentrations of 4-NQO and FA. Higher concentrations of 4-NQO and FA influenced some RNA metabolic and biosynthesis pathways. Moreover, replication and repair associated pathways were top ranked KEGG pathways with high fold-change for low concentrations of 4-NQO and FA. The similar gene profiles perturbed by DCA with three test concentrations identified, the common GO BP terms associated with aromatic amino acid family biosynthetic process and ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway. DCA has no obvious genotoxicity as there was no enriched DNA damage and repair pathways and fold-change of replication and repair KEGG pathways were very low. Five genes (RAD18, RAD59, MUS81, MMS4, and BEM4) could serve as candidate genes for genotoxic chemicals. Overall, the yeast functional genomic profiling showed great performance for assessing the signatures and potential molecular mechanisms of genotoxic chemicals.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Saccharomyces cerevisiae/efeitos dos fármacos , 4-Nitroquinolina-1-Óxido/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , DNA Fúngico , Ácido Dicloroacético/toxicidade , Formaldeído/toxicidade , Técnicas de Inativação de Genes/métodos , Mutagênicos , Saccharomyces cerevisiae/genética
3.
FEBS J ; 289(1): 262-278, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310050

RESUMO

Mitochondria form a branched tubular network in many types of cells, depending on a balance between mitochondrial fusion and fission. How mitochondrial fusion and fission are involved in regulating mitochondrial function and cell proliferation is not well understood. Here, we dissected the roles of mitochondrial fusion and fission in mitochondrial function and cell proliferation in fission yeast. We examined mitochondrial membrane potential by staining cells with DiOC6 and assessed mitochondrial respiration by directly measuring oxygen consumption of cells with a dissolved oxygen respirometer. We found that defects in mitochondrial fission or fusion reduce mitochondrial membrane potential and compromise mitochondrial respiration while the absence of both mitochondrial fusion and fission restores wild type-like respiration, normal membrane potential, and tubular networks of mitochondria. Moreover, we found that the absence of either mitochondrial fission or fusion prolongs the cell cycle and that the absence of both mitochondrial fusion and fission significantly delays cell cycle progression after nitrogen replenishment. The prolonged/delayed cell cycle is likely due to the deregulation of Cdc2 activation. Hence, our work not only establishes an intimate link between mitochondrial morphology and function but also underscores the importance of mitochondrial dynamics in regulating the cell cycle.


Assuntos
DNA Polimerase III/genética , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Carbocianinas/farmacologia , Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Saccharomyces cerevisiae/genética
4.
Sci Rep ; 11(1): 24299, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934102

RESUMO

Stem-end rot (SER) caused by Lasiodiplodia theobromae is an important disease of mango in China. Demethylation inhibitor (DMI) fungicides are widely used for disease control in mango orchards. The baseline sensitivity to difenoconazole of 138 L. theobromae isolates collected from mango in the field in 2019 was established by the mycelial growth rate method. The cross-resistance to six site-specific fungicides with different modes of action were investigated using 20 isolates randomly selected. The possible mechanism for L. theobromae resistance to difenoconazole was preliminarily determined through gene sequence alignment and quantitative real-time PCR analysis. The results showed that the EC50 values of 138 L. theobromae isolates to difenoconazole ranged from 0.01 to 13.72 µg/mL. The frequency of difenoconazole sensitivity formed a normal distribution curve when the outliers were excluded. Difenoconazole showed positive cross-resistance only with the DMI tebuconazole but not with non-DMI fungicides carbendazim, pyraclostrobin, fludioxonil, bromothalonil, or iprodione. Some multifungicide-resistant isolates of L. theobromae were found. Two amino acid substitutions (E209k and G207A) were found in the CYP51 protein, but they were unlikely to be related to the resistance phenotype. There was no alteration in the promoter region of the CYP51 gene. However, difenoconazole significantly increased the expression of the CYP51 gene in the resistant isolates compared to the susceptible isolates. These results are vital to develop effective mango disease management strategies to avoid the development of further resistance.


Assuntos
Ascomicetos , Citocromos , Dioxolanos/farmacologia , Farmacorresistência Fúngica , Proteínas Fúngicas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Triazóis/farmacologia , Ascomicetos/enzimologia , Ascomicetos/genética , Citocromos/biossíntese , Citocromos/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética
5.
Biomolecules ; 11(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944533

RESUMO

Fermented persimmon juice, Kakishibu, has traditionally been used for wood and paper protection. This protective effect stems at least partially from inhibition of microbial cellulose degrading enzymes. The inhibitory effect of Kakishibu on lytic polysaccharide monooxygenases (LPMOs) and on a cocktail of cellulose hydrolases was studied, using three different cellulosic substrates. Dose dependent inhibition of LPMO activity by a commercial Kakishibu product was assessed for the well-characterized LPMO from Thermoascus aurantiacus TaAA9A, and the inhibitory effect was confirmed on five additional microbial LPMOs. The model tannin compound, tannic acid exhibited a similar inhibitory effect on TaAA9A as Kakishibu. It was further shown that both polyethylene glycol and tannase can alleviate the inhibitory effect of Kakishibu and tannic acid, indicating a likely mechanism of inhibition caused by unspecific tannin-protein interactions.


Assuntos
Diospyros/química , Inibidores Enzimáticos/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Oxigenases de Função Mista/antagonistas & inibidores , Thermoascus/enzimologia , Hidrolases de Éster Carboxílico/efeitos adversos , Diospyros/microbiologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Fermentação , Sucos de Frutas e Vegetais/análise , Proteínas Fúngicas/antagonistas & inibidores , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hidrolases/antagonistas & inibidores , Polietilenoglicóis/efeitos adversos , Taninos/farmacologia , Thermoascus/efeitos dos fármacos
6.
Cell Rep ; 37(13): 110149, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965436

RESUMO

The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Fosfoproteínas/metabolismo , Proteínas Quinases/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteoma/análise , Saccharomyces cerevisiae/efeitos dos fármacos
7.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771045

RESUMO

The high-yielding production of pharmaceutically significant secondary metabolites in filamentous fungi is obtained by random mutagenesis; such changes may be associated with shifts in the metabolism of polyamines. We have previously shown that, in the Acremonium chrysogenum cephalosporin C high-yielding strain (HY), the content of endogenous polyamines increased by four- to five-fold. Other studies have shown that the addition of exogenous polyamines can increase the production of target secondary metabolites in highly active fungal producers, in particular, increase the biosynthesis of ß-lactams in the Penicillium chrysogenum Wis 54-1255 strain, an improved producer of penicillin G. In the current study, we demonstrate that the introduction of exogenous polyamines, such as spermidine or 1,3-diaminopropane, to A. chrysogenum wild-type (WT) and HY strains, leads to an increase in colony germination and morphological changes in a complete agar medium. The addition of 5 mM polyamines during fermentation increases the production of cephalosporin C in the A. chrysogenum HY strain by 15-20% and upregulates genes belonging to the beta-lactam biosynthetic cluster. The data obtained indicate the intersection of the metabolisms of polyamines and beta-lactams in A. chrysogenum and are important for the construction of improved producers of secondary metabolites in filamentous fungi.


Assuntos
Cefalosporinas/biossíntese , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Poliaminas/farmacologia , beta-Lactamas/metabolismo , Poliaminas/metabolismo , Metabolismo Secundário/efeitos dos fármacos
8.
BMC Microbiol ; 21(1): 311, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753419

RESUMO

BACKGROUND: In Saccharomyces cerevisiae, the retrograde signalling pathway is activated in ρ0/- cells, which lack mitochondrial DNA. Within this pathway, the activation of the transcription factor Pdr3 induces transcription of the ATP-binding cassette (ABC) transporter gene, PDR5, and causes pleiotropic drug resistance (PDR). Although a histone deacetylase, Rpd3, is also required for cycloheximide resistance in ρ0/- cells, it is currently unknown whether Rpd3 and its DNA binding partners, Ume6 and Ash1, are involved in the activation of PDR5 transcription and PDR in ρ0/- cells. This study investigated the roles of RPD3, UME6, and ASH1 in the activation of PDR5 transcription and PDR by retrograde signalling in ρ0 cells. RESULTS: ρ0 cells in the rpd3∆ and ume6∆ strains, with the exception of the ash1∆ strain, were sensitive to fluconazole and cycloheximide. The PDR5 mRNA levels in ρ0 cells of the rpd3∆ and ume6∆ strains were significantly reduced compared to the wild-type and ash1∆ strain. Transcriptional expression of PDR5 was reduced in cycloheximide-exposed and unexposed ρ0 cells of the ume6∆ strain; the transcriptional positive response of PDR5 to cycloheximide exposure was also impaired in this strain. CONCLUSIONS: RPD3 and UME6 are responsible for enhanced PDR5 mRNA levels and PDR by retrograde signalling in ρ0 cells of S. cerevisiae.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/farmacologia , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cicloeximida/farmacologia , Fluconazol/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Ativação Transcricional/efeitos dos fármacos
9.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641518

RESUMO

Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Hidroximetilglutaril-CoA Redutases/genética , Antifúngicos/química , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Azóis/química , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Testes de Sensibilidade Microbiana , Mutação Puntual , Regiões Promotoras Genéticas , Sequenciamento Completo do Genoma
10.
mSphere ; 6(5): e0071021, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643421

RESUMO

The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid ß-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCE Candida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward ß-oxidation. These results provide definitive explanations for the observed antifungal effects.


Assuntos
Candida auris/efeitos dos fármacos , Candida auris/genética , Candida auris/fisiologia , Farneseno Álcool/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Percepção de Quorum , Ativação Transcricional/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
11.
PLoS One ; 16(10): e0258108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34614005

RESUMO

Candida is an opportunistic pathogen and a common cause of fungal infections worldwide. Anti-fungal use against Candida infections has resulted in the appearance of resistant strains. The limited choice of anti-fungal therapy means alternative strategies are needed to control fungal infectious diseases. The aim of this study was to evaluate the inhibition of Candida biofilm formation by Hedera rhombea (Korean name: songak) extract. Biofilm formation was assessed using the crystal violet assay which showed a dose dependent reduction in the presence of extract with the biofilm formation inhibitory concentration of C. albicans (IC50 = 12.5µg/ml), C. tropicalis var. tropicalis (IC50 = 25µg/ml), C. parapsilosis var. parapsilosis (IC50 = 6.25µg/ml), C. glabrata (IC50 = 6.25µg/ml), C. tropicalis (IC50 = 12.5µg/ml), and C. parapsilosis (IC50 = 12.5µg/ml) without directly reducing Candida growth. Treatment with 6.25µg/mL of extract increased the antifungal susceptibility to miconazole from 32% decreasing of fungal growth to 98.8% of that based on the fungal growth assay. Treatment of extract dose-dependently reduced the dimorphic transition of Candida based on the dimorphic transition assay and treatment of 3.125µg/mL of extract completely blocked the adherence of Candida to the HaCaT cells. To know the molecular mechanisms of biofilm formation inhibition by extract, qRT-PCR analysis was done, and the extract was found to dose dependently reduce the expression of hyphal-associated genes (ALS3, ECE1, HWP1, PGA50, and PBR1), extracellular matrix genes (GSC1, ZAP1, ADH5, and CSH1), Ras1-cAMP-PKA pathway genes (CYR1, EFG1, and RAS1), Cph2-Tec1 pathway gene (TEC1) and MAP kinases pathway gene (HST7). In this study, Hedera rhombea extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is good screen for developing the antifungal adjuvant and Hedera rhombea extract should be a good candidate against biofilm-related fungal infection.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Hedera/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Candida/genética , Candida/patogenicidade , Candidíase/genética , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hifas/química , Testes de Sensibilidade Microbiana
12.
Biomolecules ; 11(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572607

RESUMO

In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.


Assuntos
Desoxirribonucleotídeos/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas HMGB/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/genética , Sequência de Bases , Cádmio/toxicidade , Carbono/farmacologia , Ciclo Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Proteínas Fúngicas/química , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas HMGB/química , Heme/biossíntese , Peróxido de Hidrogênio/toxicidade , Kluyveromyces/efeitos dos fármacos , Mutação/genética , Oxirredução/efeitos dos fármacos , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Ribossômico/genética , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Open Biol ; 11(9): 210099, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582709

RESUMO

In Aspergillus nidulans a regulon including 11 hxn genes (hxnS, T, R, P, Y, Z, X, W, V, M and N) is inducible by a nicotinate metabolic derivative, repressible by ammonium and under stringent control of the nitrogen-state-sensitive GATA factor AreA and the specific transcription factor HxnR. This is the first report in a eukaryote of the genomic organization of a possibly complete pathway of nicotinate utilization. In A. nidulans the regulon is organized in three distinct clusters, this organization is variable in the Ascomycota. In some Pezizomycotina species all 11 genes map in a single cluster; in others they map in two clusters. This variable organization sheds light on cluster evolution. Instances of gene duplication followed by or simultaneous with integration in the cluster, partial or total cluster loss, and horizontal gene transfer of several genes (including an example of whole cluster re-acquisition in Aspergillus of section Flavi) were detected, together with the incorporation in some clusters of genes not found in the A. nidulans co-regulated regulon, which underlie both the plasticity and the reticulate character of metabolic cluster evolution. This study provides a comprehensive phylogeny of six members of the cluster across representatives of all Ascomycota classes.


Assuntos
Aspergillus nidulans/metabolismo , Eucariotos/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Niacina/farmacologia , Filogenia , Aspergillus nidulans/efeitos dos fármacos , Proteínas Fúngicas/genética , Duplicação Gênica , Família Multigênica
14.
PLoS Genet ; 17(9): e1009582, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591857

RESUMO

The most commonly used antifungal drugs are the azole compounds, which interfere with biosynthesis of the fungal-specific sterol: ergosterol. The pathogenic yeast Candida glabrata commonly acquires resistance to azole drugs like fluconazole via mutations in a gene encoding a transcription factor called PDR1. These PDR1 mutations lead to overproduction of drug transporter proteins like the ATP-binding cassette transporter Cdr1. In other Candida species, mutant forms of a transcription factor called Upc2 are associated with azole resistance, owing to the important role of this protein in control of expression of genes encoding enzymes involved in the ergosterol biosynthetic pathway. Recently, the C. glabrata Upc2A factor was demonstrated to be required for normal azole resistance, even in the presence of a hyperactive mutant form of PDR1. Using genome-scale approaches, we define the network of genes bound and regulated by Upc2A. By analogy to a previously described hyperactive UPC2 mutation found in Saccharomyces cerevisiae, we generated a similar form of Upc2A in C. glabrata called G898D Upc2A. Analysis of Upc2A genomic binding sites demonstrated that wild-type Upc2A binding to target genes was strongly induced by fluconazole while G898D Upc2A bound similarly, irrespective of drug treatment. Transcriptomic analyses revealed that, in addition to the well-described ERG genes, a large group of genes encoding components of the translational apparatus along with membrane proteins were responsive to Upc2A. These Upc2A-regulated membrane protein-encoding genes are often targets of the Pdr1 transcription factor, demonstrating the high degree of overlap between these two regulatory networks. Finally, we provide evidence that Upc2A impacts the Pdr1-Cdr1 system and also modulates resistance to caspofungin. These studies provide a new perspective of Upc2A as a master regulator of lipid and membrane protein biosynthesis.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/metabolismo , Farmacorresistência Fúngica/genética , Fatores de Transcrição/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Imunoprecipitação da Cromatina , Fluconazol/farmacologia , Mutação com Ganho de Função , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Genes Fúngicos , Mutação , Transcrição Gênica/genética , Transcriptoma
15.
Mitochondrion ; 60: 219-227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428580

RESUMO

In this study, we provide a global view of population and processing of mitochondrial tRNAs-derived fragments (mt-tRFs) in fission yeast Schizosaccharomyces pombe. Here, mt-tRFs of 15-30 nucleotides were retrieved from S. pombe small RNA libraries obtained from unstressed, stress, and during stationary phase conditions. We demonstrate that production of these fragments increase during heat stress and stationary phase conditions in S. pombe, especially (most notably) in stationary phase. Analysis of data also reveals depending on the tRNA, either 5'-mt-tRF or 3'-mt-tRF was found and major mt-tRNA processing sites have been precisely identified. Furthermore, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNase ZL globally impairs mt-tRF processing. Finally, our result showed mt-tRFs were predicted to target mitochondrial genome mapping mtDNA-encoded protein gene. These observations suggest that mitochondrial tRFs may play an important regulatory role in response to stress and development.


Assuntos
Mitocôndrias/metabolismo , RNA Fúngico/metabolismo , RNA Mitocondrial/genética , RNA de Transferência/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Temperatura Alta , Humanos , Peróxido de Hidrogênio/toxicidade , Proteínas Mitocondriais , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética
16.
FEMS Microbiol Lett ; 368(15)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370016

RESUMO

As a potentially toxic heavy metal, Cadmium (Cd) can cause endoplasmic reticulum and oxidative stress, and thus lead to cell death. To explore the mechanisms of Cd toxicity, we investigated the UPRE-lacZ expression, the intracellular reactive oxygen species (ROS) and cell death in the 151 Cd-sensitive mutants of Saccharomyces cerevisiae in response to Cd stress. We identified 101 genes regulating UPRE-lacZ expression were involved in preventing ROS production and/or cell death from increasing to high levels, while mutants for 72 genes caused both elevated ROS production and cell death, indicating the Cd-induced ROS production and cell death are mediated by UPR. Genes involved in cell wall integrity (CWI) pathway, vacuolar protein sorting (VPS) and vacuolar transport, calcium/calcineurin pathway and PHO pathways were all required for the Cd-induced UPR, intracellular ROS and cell death. To conclude, this study highlights the importance of Cd-induced UPR, intracellular ROS levels and cell death that may play crucial roles in Cd-induced toxicity.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cádmio/metabolismo , Cádmio/toxicidade , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas
17.
FASEB J ; 35(9): e21778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383971

RESUMO

As a result of the relatively few available antifungals and the increasing frequency of resistance to them, the development of novel antifungals is increasingly important. The plant natural product poacic acid (PA) inhibits ß-1,3-glucan synthesis in Saccharomyces cerevisiae and has antifungal activity against a wide range of plant pathogens. However, the mode of action of PA is unclear. Here, we reveal that PA specifically binds to ß-1,3-glucan, its affinity for which is ~30-fold that for chitin. Besides its effect on ß-1,3-glucan synthase activity, PA inhibited the yeast glucan-elongating activity of Gas1 and Gas2 and the chitin-glucan transglycosylase activity of Crh1. Regarding the cellular response to PA, transcriptional co-regulation was mediated by parallel activation of the cell-wall integrity (CWI) and high-osmolarity glycerol signaling pathways. Despite targeting ß-1,3-glucan remodeling, the transcriptional profiles and regulatory circuits activated by caspofungin, zymolyase, and PA differed, indicating that their effects on CWI have different mechanisms. The effects of PA on the growth of yeast strains indicated that it has a mode of action distinct from that of echinocandins, suggesting it is a unique antifungal agent.


Assuntos
Antifúngicos/farmacologia , Parede Celular/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Glicerol/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Estilbenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , beta-Glucanas/farmacologia , Caspofungina/farmacologia , Parede Celular/genética , Parede Celular/metabolismo , Quitina/farmacologia , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Concentração Osmolar , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/genética
18.
Carbohydr Polym ; 269: 118349, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294354

RESUMO

Chitosan has wide-spectrum antimicrobial activity but knowledge of its antifungal mechanism is still incomplete. In this study, transcriptome of Penicillium expansum upon chitosan treatment was analyzed by RNA-Seq. KEGG enrichment analysis revealed that endocytosis as well as other physiological pathways was regulated by chitosan treatment. Clathrin adaptor protein mu-subunit (PeCAM) gene, which encodes a protein associated with clathrin-dependent endocytosis, was up-regulated after chitosan treatment. Deletion of PeCAM resulted in changes of conidial, hyphal and colonial morphology. Confocal microscopy images of the distribution of fluorescein isothiocyanate-labeled chitosan confirmed cellular internalization of chitosan. However, deletion of PeCAM almost completely blocked uptake of chitosan into fungal cells and ΔPeCAM mutant exhibited less sensitivity to chitosan compared with wild type, suggesting that chitosan uptake is mediated by clathrin-dependent endocytosis and internalized chitosan also plays an important role in its antifungal activity. Collectively, our results provide a new insight into the antifungal mechanism of chitosan.


Assuntos
Antifúngicos/farmacologia , Quitosana/farmacologia , Endocitose/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Antifúngicos/metabolismo , Quitosana/metabolismo , Endocitose/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mutação , Penicillium/metabolismo , RNA-Seq , Transcriptoma/efeitos dos fármacos
19.
Biochem Biophys Res Commun ; 570: 125-130, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34280615

RESUMO

There are two major deadenylase complexes, Ccr4-Not and Pan2-Pan3, which shorten the 3' poly(A) tail of mRNA and are conserved from yeast to human. We have previously shown that the Ccr4-mediated deadenylation plays the important role in gene expression regulation in the yeast stationary phase cell. In order to further understand the role of deadenylases in different growth condition, in this study we investigated the effect of deletion of both deadenylases on the cell in non-fermentable carbon containing media. We found that both ccr4Δ and ccr4Δ pan2Δ mutants showed similar growth defect in YPD media: when switched to media containing non-fermentable source (Glycerol-Lactate) only the ccr4Δ grew while the ccr4Δ pan2Δ did not. Ccr4, Pan2, and Pan3 were phosphorylated in GlyLac medium, suggesting that the activities of Ccr4, Pan2, and Pan3 may be regulated by phosphorylation in response to change of carbon sources. To get insights how Ccr4 and Pan2 function in the cell growth in media containing non-fermentable source only, we isolated multicopy suppressors for the growth defect on YPGlyLac media of the ccr4Δ pan2Δ mutant and identified two genes, STM1 and REX2, which encode a ribosome-associated protein and a 3'-5' RNA exonuclease, respectively. Our results suggest that the Pan2-Pan3 complex, together with the Ccr4-Not complex, has important roles in the growth on non-fermentable carbon sources.


Assuntos
Carbono/farmacologia , Fermentação , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mutação/genética , Fosforilação/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos
20.
J Basic Microbiol ; 61(8): 736-744, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34252217

RESUMO

Primordia formation is the first and most critical step in the development of fruiting bodies of edible fungi. In this study, the effects of exogenous ascorbic acid (ASA) on the Pleurotus ostreatus mycelia growth and primordia formation were researched and the results showed that the growth rate of P. ostreatus mycelia was accelerated and the time of primordia formation was advanced. The protein content and ascorbate oxidase (AAO) activity analysis showed that with the increase of ASA concentration, the protein content of mycelia first decreased and then increased, and in a certain concentration range, exogenous ASA could significantly promote the activity of AAO. Further expression analysis of the development regulating genes (Pofst3 and Pofst4) as well as blue light receptor coding genes (PoWC-1 and PoWC-2) showed the expression levels of those four genes all changed after the exogenous ASA addition, which indicated that the expression changes of PoWC-1 and PoWC-2, two key genes in the light morphogenesis, might affect the expression levels of development regulating genes Pofst3 and Pofst4, so as to lead to the formation of primordia in advance.


Assuntos
Ácido Ascórbico/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Pleurotus/efeitos dos fármacos , Pleurotus/crescimento & desenvolvimento , Ascorbato Oxidase , Ácido Ascórbico/metabolismo , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Micélio/genética , Micélio/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA